CUTEstProblem.cons
- CUTEstProblem.cons(x, index=None, gradient=False)
Evaluate the constraints (and optionally their Jacobian or gradient).
# constraint vector c = problem.cons(x) # i-th constraint ci = problem.cons(x, index=i) # constraints and Jacobian c, J = problem.cons(x, gradient=True) # i-th constraint and its gradient ci, Ji = problem.cons(x, index=i, gradient=True)
For unconstrained problems, this returns None.
This calls CUTEst routine CUTEST_ccfg or CUTEST_ccifg.
For large problems, problem.scons returns sparse matrices.
- Parameters:
x (numpy.ndarray with shape (n,)) – input vector
index (int, optional) – which constraint to evaluate (default=None -> all constraints). Must be in 0..self.m-1.
gradient (bool, optional) – whether to return constraint(s) and gradient/Jacobian, or just constraint (default=False; i.e. constraint only)
- Returns:
value of constraint(s), and Jacobian or gradient of constraint(s) at x
- Return type:
numpy.ndarray(m,) or float or (numpy.ndarray(m,), numpy.ndarray(m,n)) or (float, numpy.ndarray(n,))