CUTEstProblem.scons
- CUTEstProblem.scons(x, index=None, gradient=False)
Evaluate the constraints (and optionally their sparse Jacobian or gradient).
# constraints c = problem.scons(x) # i-th constraint ci = problem.scons(x, index=i) # constraints and sparse Jacobian c, J = problem.scons(x, gradient=True) # i-th constraint and its sparse gradient ci, Ji = problem.scons(x, index=i, gradient=True)
The matrix J or vector Ji is of type scipy.sparse.coo_matrix.
For unconstrained problems, this returns None.
For small problems, problem.cons returns dense matrices.
This calls CUTEst routine CUTEST_ccfsg or CUTEST_ccifsg.
- Parameters:
x (numpy.ndarray with shape (n,)) – input vector
index (int, optional) – which constraint to evaluate (default=None -> all constraints). Must be in 0..self.m-1.
gradient (bool, optional) – whether to return constraint(s) and gradient/Jacobian, or just constraint (default=False; i.e. constraint only)
- Returns:
value of constraint(s), and sparse Jacobian or gradient of constraint(s) at x
- Return type:
numpy.ndarray(m,) or float or (numpy.ndarray(m,), scipy.sparse.coo_matrix(m,n)) or (float, scipy.sparse.coo_matrix(n,))