CUTEstProblem.slagjac
- CUTEstProblem.slagjac(x, v=None)
Evaluate sparse gradient of objective or Lagrangian, and sparse Jacobian of constraints.
# objective gradient and Jacobian g, J = problem.slagjac(x) # Lagrangian gradient and Jacobian g, J = problem.slagjac(x, v=v)
The vector g and matrix J are of type scipy.sparse.coo_matrix.
For unconstrained problems, J is None.
For small problems, problem.lagjac returns dense matrices.
This calls CUTEst routine CUTEST_csgr.
Note: in CUTEst, the sign convention is such that the Lagrangian = objective + lagrange_multipliers * constraints
- Parameters:
x (numpy.ndarray with shape (n,)) – input vector
v (numpy.ndarray with shape (m,), optional) – vector of Lagrange multipliers
- Returns:
sparse gradient of objective or Lagrangian, and sparse Jacobian of constraints
- Return type:
(scipy.sparse.coo_matrix(n,), scipy.sparse.coo_matrix(m,n))