CUTEstProblem.lag
- CUTEstProblem.lag(x, v, gradient=False)
Evaluate Lagrangian function value and its gradient if requested.
# Lagrangian function value l = problem.lag(x, v) # Lagrangian function value and Lagrangian gradient l, g = problem.lag(x, v, gradient=True)
For unconstrained problems, this returns None.
This calls CUTEst routine CUTEST_clfg.
For large problems, problem.slagjac returns a sparse Lagrangian gradient.
- Parameters:
x (numpy.ndarray with shape (n,)) – input vector
v (numpy.ndarray with shape (m,)) – input vector of Lagrange multipliers
gradient (bool, optional) – whether to also return Lagrangian gradient (default=False)
- Returns:
value of Lagrangian function, and optionally gradient of Lagrangian at x
- Return type:
float or (float, numpy.ndarray(n,))